An autopilot is often an integral component of a Flight Management System.
Autopilots in modern complex aircraft are three-axis and generally divide a flight into taxi, takeoff, ascent, level, descent, approach and landing phases. Autopilots exist that automate all of these flight phases except the taxiing. An autopilot-controlled landing on a runway and controlling the aircraft on rollout (i.e. keeping it on the centre of the runway) is known as a CAT IIIb landing or Autoland, available on many major airports' runways today
The autopilot in a modern large aircraft typically reads its position and the aircraft's attitude from an inertial guidance system. Inertial guidance systems accumulate errors over time. They will incorporate error reduction systems such as the carousel system that rotates once a minute so that any errors are dissipated in different directions and have an overall nulling effect. Error in gyroscopes is known as drift. This is due to physical properties within the system, be it mechanical or laser guided, that corrupt positional data. The disagreements between the two are resolved with digital signal processing, most often a six-dimensional Kalman filter. The six dimensions are usually roll, pitch, yaw,altitude, latitude and longitude. Aircraft may fly routes that have a required performance factor, therefore the amount of error or actual performance factor must be monitored in order to fly those particular routes. The longer the flight the more error accumulates within the system. Radio aids such as DME, DME updates and GPS may be used to correct the aircraft position.
Categories
Instrument-aided landings are defined in categories by the International Civil Aviation Organization. These are dependent upon the required visibility level and the degree to which the landing can be conducted automatically without input by the pilot.
CAT I - This category permits pilots to land with a decision height of 200 ft (61 m) and a forward visibility or Runway Visual Range (RVR) of 550 m. Simplex autopilots are sufficient.
CAT II - This category permits pilots to land with a decision height between 200 ft and 100 ft (≈ 30 m) and a RVR of 300 m. Autopilots have a fail passive requirement.
CAT IIIa -This category permits pilots to land with a decision height as low as 50 ft (15 m) and a RVR of 200 m. It needs a fail-passive autopilot. There must be only a 10−6 probability of landing outside the prescribed area.
CAT IIIb - As IIIa but with the addition of automatic roll out after touchdown incorporated with the pilot taking control some distance along the runway. This category permits pilots to land with a decision height less than 50 feet or no decision height and a forward visibility of 250 ft (76 m, compare this to aircraft size, some of which are now over 70 m long) or 300 ft (91 m) in the United States. For a landing-without-decision aid, a fail-operational autopilot is needed. For this category some form of runway guidance system is needed: at least fail-passive but it needs to be fail-operational for landing without decision height or for RVR below 100 m.
CAT IIIc - As IIIb but without decision height or visibility minimums, also known as "zero-zero".
Fail-passive autopilot: in case of failure, the aircraft stays in a controllable position and the pilot can take control of it to go around or finish landing. It is usually a dual-channel system.
Fail-operational autopilot: in case of a failure below alert height, the approach, flare and landing can still be completed automatically. It is usually a triple-channel system or dual-dual system.